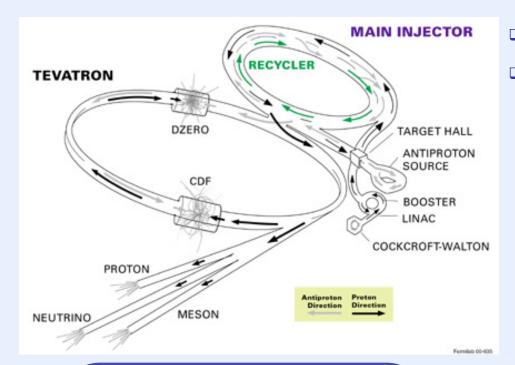


New measurement of the B^0_s mixing phase and observation of suppressed B^0_s decays at CDF

Louise Oakes, for the CDF collaboration Technische Universität München

DISCRETE2010

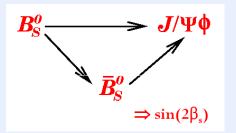

Rome, 10th December 2010

Recent CDF B_s⁰ analyses:

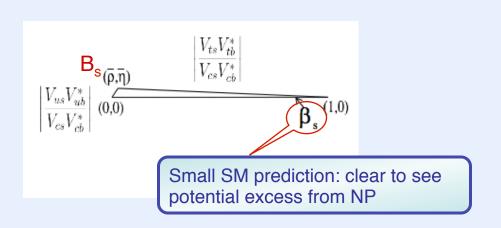
- Updated measurement of sin(2β_s)
 - Using 5.2 fb⁻¹ integrated luminosity
 - Improved Particle ID and flavour tagging
- Calibration of Same Side Kaon Tagger through B_s⁰ mixing measurement
 - \blacksquare Important flavour tagger for β_s analysis
- Observation of 2 suppressed B_s⁰ decay channels
 - B_s->J/ψK*
 - \square B_s->J/ ψ K_s

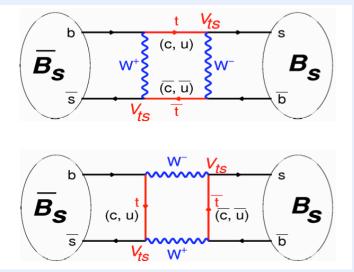
B physics at CDF:

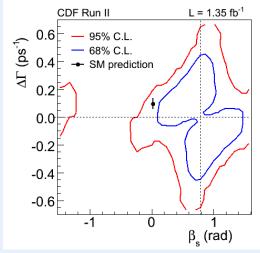
- Particle ID: dE/dx and TOF
- Excellent vertex resolution ~23μm and p_T resolution: σ (p_T)/ p_T ² ~ 0.1%
- Di-muon trigger important for B->J/ψX analyses


- p-pbar collisions at 1.96TeV
- Constantly improving luminosity performance
 - peak instantaneous luminosity
 >3x10³² cm⁻²s⁻¹
 - ~8fb⁻¹ delivered to the experiments

Latest CDF $sin(2\beta_s)$ results with 5.2 fb⁻¹

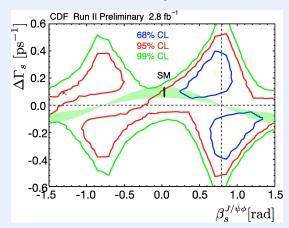

Search for New Physics in B_s mixing




CP violation in $B_s{\to}J/\psi\phi$ occurs through interference of decays with and without mixing.

$$B_s^L = |B^0\rangle + |\bar{B}^0\rangle$$
$$B_s^H = |B^0\rangle - |\bar{B}^0\rangle$$

- New particles could enter weak mixing box diagrams and enhance CP violation
- $\hfill\Box$ Time evolution of flavour tagged $B_s{\to}J/\psi\phi$ decays is very sensitive to New Physics
 - Decay width difference, $\Delta\Gamma$ and mixing phase would be effected by additional NP phase


PRL 100, 161802 (2008)

CDF: 1.3fb⁻¹ result

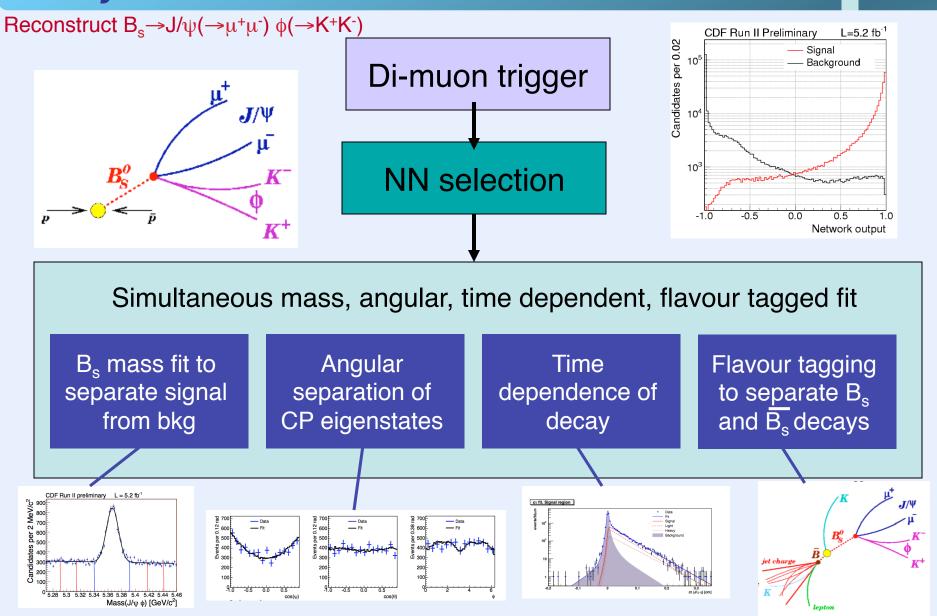
P-value for SM point =15% -> significance 1.5 σ

CDF: 2.8fb⁻¹ result

P-value for SM point =7% -> significance 1.8σ

 $[\mathbf{p}]$ 99% CL $\Delta\Gamma_s$ 0.2 0.0 -0.2-0.4-0.6^L -1.0 -0.5 0.0 0.5 1.0 $\beta_{\mathfrak{c}}^{J/\psi\phi}[\mathrm{rad}]$

95% CL

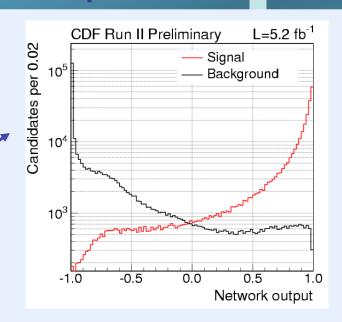

0.4

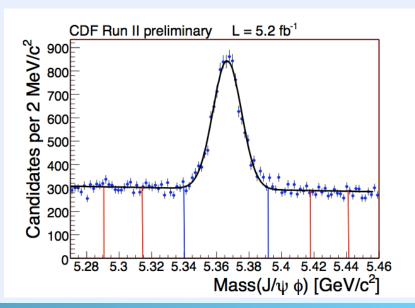
Tevatron combination: probability of observed deviation from SM = 3.4% (2.12σ) CDF Public Note 9787

Behaviour of likelihood fit prevents giving β_s measurement as a point value - instead produce likelihood contours

CDF Public Note 9458

Analysis overview


Data sample and selection for update

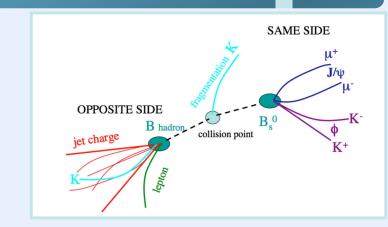

Statistically limited analysis - high quality

selection is essential:

- Key role of particle ID
 - recalibrated for this result
- Neural network selection
 - \Box optimised on pseudo experiments to minimise statistical errors on β_s

- Integrated luminosity: 5.2fb⁻¹
- Signal events: ~6500 (c.f. 2.8fb⁻¹ with ~3150 signal events)

B flavour tagging and the likelihood fit

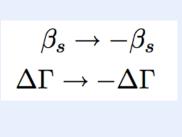


Opposite side tag (OST):

- Jet charge and lepton charge taggers
- Tag flavour of opposite side b quark
- □ εD²≈1.2%

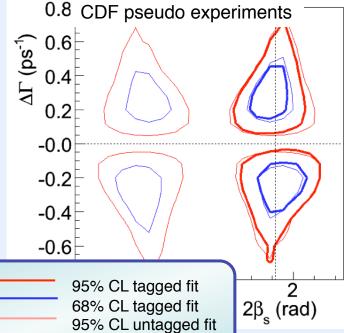
Same side tag (SST):

- Kaon tags flavour of s quark in B_s
- □ εD²≈3.2%



Fit without flavour tagging, has four fold ambiguity:

- $f \beta_s$ and $\Delta\Gamma$ symmetric
- strong phases symmetric about pi


$$egin{array}{lll} eta_s &
ightarrow & rac{\pi}{2} - eta_s \ \Delta \Gamma &
ightarrow & -\Delta \Gamma \ \phi_{\parallel} &
ightarrow & 2\pi - \phi_{\parallel} \ \phi_{\perp} &
ightarrow & \pi - \phi_{\perp} \end{array}$$

and

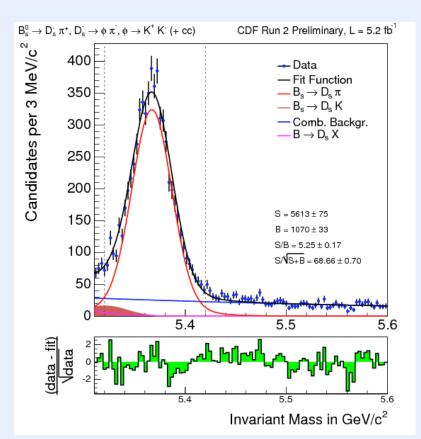
 Addition of flavour tagging allows us to follow time dependence of B_s and B_s separately

-> Removes half of the ambiguity

68% CL untagged fit

B flavour tagging: SSKT calibration

- SSKT updated for this analysis
- calibrated on B_s mixing measurement
- B_s mixing measured with 5.2fb⁻¹
- First CDF calibration of a SSKT on data
- Uses several decay modes:


$$B_s^0 \to D_s^- \pi^+, \ D_s^- \to \phi^0 \pi^-, \ \phi^0 \to K^+ K^-$$

$$B_s^0 \to D_s^- \pi^+, \ D_s^- \to K^* K^-, \ K^* \to K^+ \pi^-$$

$$B_s^0 \to D_s^- \pi^+, \ D_s^- \to (3\pi)^-$$

$$B_s^0 \to D_s^- (3\pi)^+, \ D_s^- \to \phi^0 \pi^-, \ \phi^0 \to K^+ K^-$$

12877±113 combined signal events

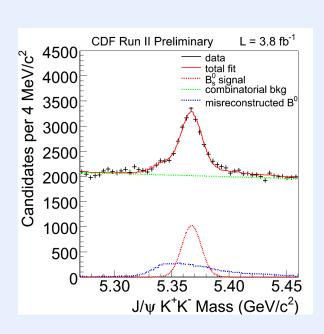
golden mode

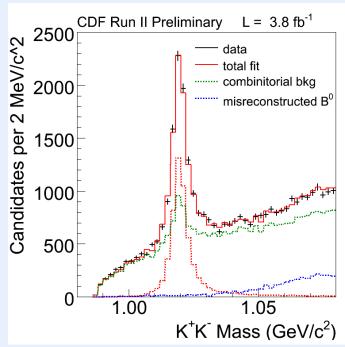
http://www-cdf.fnal.gov/physics/new/bottom/100204.blessed-sskt-calibration/index.html

B flavour tagging: SSKT calibration

- Mixing amplitude ≈1:
 - tagger assesses its performance accurately
- Amplitude > 1
 - tagger underestimates its power
- Amplitude < 1
 - tagger overestimates performance
- Measured amplitude used to scale event by event tagging dilution

CDF Run 2 Preliminary, L = 5.2 fb⁻¹ 2.0 **Amplitude** Amplitude A Sensitivity: 37.0 ps⁻¹ 1.5 1.0 0.5 0.0 -0.5-1.0 -1.5 30 Mixing Frequency in ps⁻¹


Agreement between this and the published CDF measurement is very good

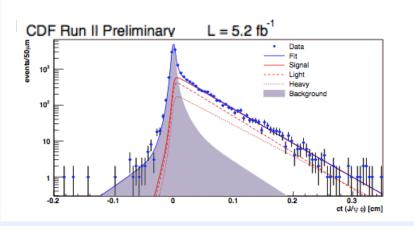

$$\mathcal{A} = 0.94 \pm 0.15$$
 (stat.) $\pm\,0.13$ (syst.)

$$\Delta m_s = 17.79 \pm 0.07 \ ps^{-1} \ (stat. only)$$

 $\epsilon A^2 D^2 \approx 3.2 \pm 1.4 \%$

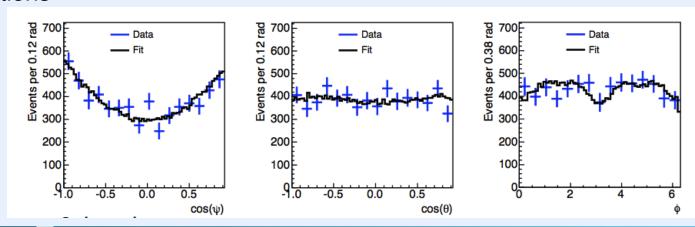
S-wave contamination

- □ Potential contamination of B_s ->J/ψφ signal by: B_s ->J/ψ KK (KK non-resonant) and B_s ->J/ψ f⁰ where KK and f⁰ are S-wave states
- $\begin{tabular}{ll} \hline \square & Contamination could bias towards \\ & SM value of β_s \\ \end{tabular}$
- S-wave KK component has been added to full angular, time-dependent likelihood fit.



The fitted fraction of KK S-wave contamination in the signal is

< 6.7% at the 95% CL


Checking the fitter: projections

Fit projections on physical parameters such as B_s lifetime used to check performance of the likelihood fit

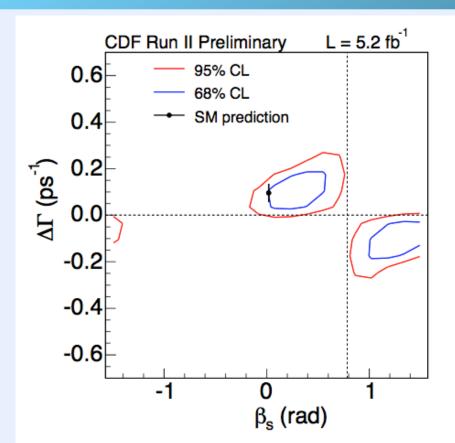
B_s lifetime distribution consisting of:

- □ B_s^H (short lived) ·······
- \square B_s^L (long lived) ----
- Angular distributions are used to separate CP odd and even final states
- Angular projections used to check our parameterisation of the angular distributions

Flavour tagged fit with $\beta_s = 0.0$

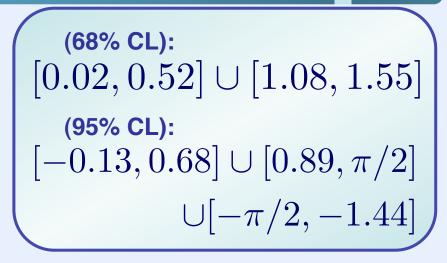
- Tagged B_s→J/ψφ likelihood fit
- \Box CP violating phase, $\beta_s = 0$, set to SM prediction

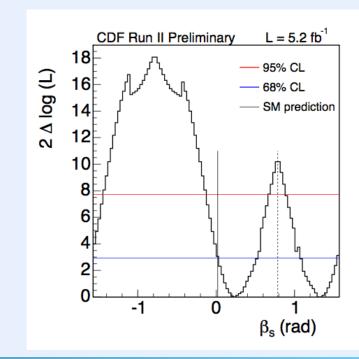
PDG value:


$$\tau_s = 1.47^{+0.026}_{-0.027} \text{ ps}$$

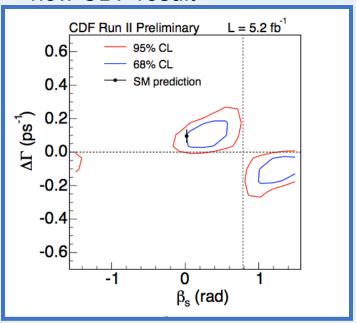
CDF II Preliminary 5.2fb ⁻¹

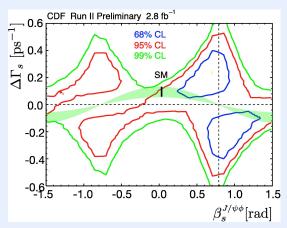
$$au_s = 1.53 \pm 0.025 \; ({
m stat.}) \; \pm 0.012 \; ({
m syst.}) \; {
m ps}$$
 $\Delta \Gamma = 0.075 \pm 0.035 \; ({
m stat.}) \pm 0.01 \; ({
m syst.}) \; ps^{-1}$
 $|A_{\parallel}(0)|^2 = 0.231 \pm 0.014 \; ({
m stat.}) \pm 0.015 \; ({
m syst.})$
 $|A_0(0)|^2 = 0.524 \pm 0.013 \; ({
m stat.}) \pm 0.015 \; ({
m syst.})$
 $\phi_{\perp} = 2.95 \pm 0.64 \; ({
m stat.}) \pm 0.07 \; ({
m syst.})$


World's most precise single measurement of B_s lifetime and decay width difference

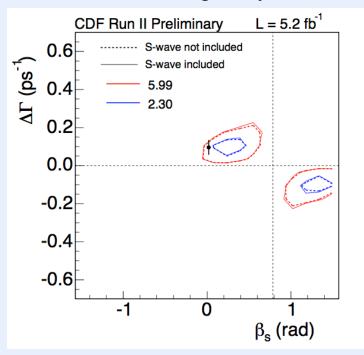

New CDF measurement of β_s

Coverage adjusted 2D likelihood contours for β_s and $\Delta\Gamma$


P-value for SM point: 44% (0.8σ deviation)

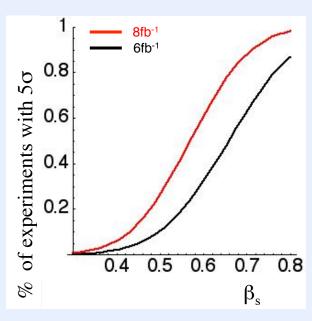


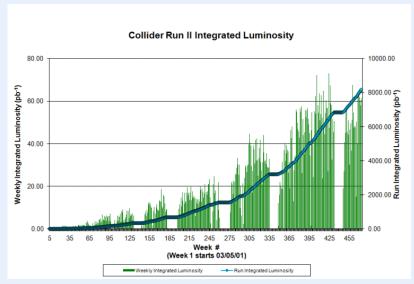
Comparisons


new CDF result

CDF ICHEP 2008 result

2D likelihood contours for β_s and $\Delta\Gamma$ without coverage adjustment




Inclusion in the fit of S-wave KK (f⁰) contamination to phi meson signal has small effect on likelihood contours

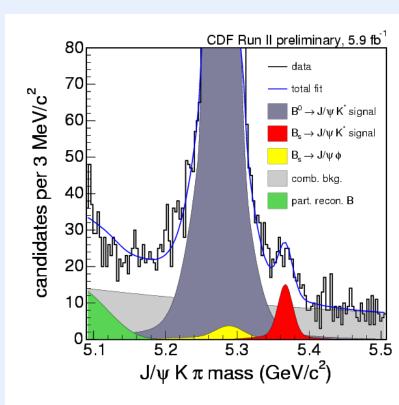
Future prospects

- Tevatron delivering record
 luminosity, CDF records ~60pb⁻¹
 per week
- End of 2011: double again the dataset, further improvements to analysis
- Search for NP in B_s⁰ mixing at CDF has potential to observe/ exclude wide range of non-SM mixing phase values
- Investigating other channels related to this physics – such as recently observed

 $B_s \rightarrow J/\Psi K_s$ and $B_s \rightarrow J/\Psi K^*$

Observation of new suppressed B_s^0 decays and measurement of their branching ratios

Observation of previously unseen B_s decays:

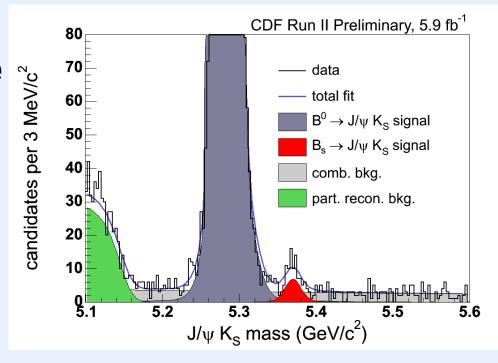

- $B_s^0 \rightarrow J/\Psi K_s$
- $B_s^0 \rightarrow J/\Psi K^*$
- Binned maximum likelihood fit to find ratios of B⁰ and B_s⁰ to each final state
- Exploit strong mass and lifetime resolution
- 3 Gaussian templates used to model both B⁰ and B_s⁰
- Exponential models combinatorial background
- Relative acceptance factor calculated from MC

http://www-cdf.fnal.gov/physics/new/bottom/100708.blessed-BsJpsiK/cdf10240 SuppresBsPublicNote.pdf

Suppressed B_s decays

B_s→ J/Ψ K*

- Admixture of CP states
- □ Possible extraction of $sin(2\beta_s)$
- 8 σ significance
- Yield: 151 ± 25
- B⁰->J/ψ K* yield:
 9530±110


$$\frac{BR(B_s^0 \to J/\psi K^*)}{BR(B^0 \to J/\psi K^*)} = (0.041 \pm 0.007 \text{ (stat.)} \pm 0.004 \text{ (syst.)} \pm 0.005 \text{ (frag.)})$$

Suppressed B_s decays

$$B_s \rightarrow J/\Psi K_s$$

- pure CP odd state
- access to B_s^H lifetime
- access to unitarity triangle angle γ
- 7.2 σ significance
- □ Yield: 64 ± 14
 - \blacksquare B⁰->J/ψ K_s yield:

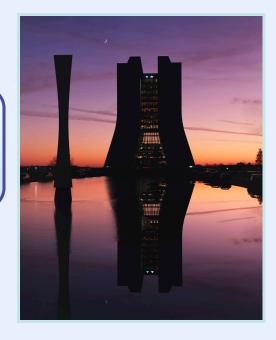
5954±79

$$\frac{BR(B_s^0 \to J/\psi K^0)}{BR(B^0 \to J/\psi K^0)} = (0.062 \pm 0.009 \text{ (stat.)} \pm 0.025 \text{ (syst.)} \pm 0.008 \text{ (frag.)})$$

Summary

Updated CDF search for NP in $B_s^0 \rightarrow J/\psi \phi$

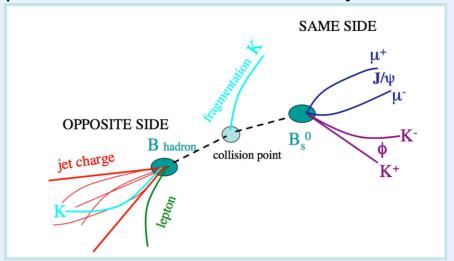
- □ Tightened constraints on CP violating phase $β_s$ [0.02, 0.52] ∪ [1.08, 1.55] (68% CL) [-0.13, 0.68] ∪ [0.89, π/2] ∪ [-π/2, -1.44] (95% CL)
- \square P-value for SM point: 44% (0.8 σ)
- World's best measurement of B_s lifetime and decay width difference in hypothesis of no CP violation
- SSKT calibrated on updated B_s mixing measurement


First observation of 2 suppressed B_s decays, with high significance

Measurement of Branching Ratios

$$BR(B_s^0 \to J/\psi K^*) = (8.3 \pm 1.2 \text{ (stat.) } \pm 3.3 \text{ (syst.) } \pm 1.0 \text{ (frag.) } \pm 0.4 \text{ (PDG)}) \times 10^{-5}$$

 $BR(B_s^0 \to J/\psi K^0) = (3.53 \pm 0.61 \text{ (stat.)} \pm 0.35 \text{ (syst.)} \pm 0.43 \text{ (frag.)} \pm 0.13 \text{ (PDG)}) \times 10^{-5}$


 With sufficient statistics, both could be used to extract parameters of interest for CP violation measurements Back up

B flavour tagging at CDF

Opposite side tag (OST):

- b quarks are pair produced (strong interaction -> flavour conservation)
- Can deduce properties of the candidate B meson from decay of the B hadron formed by the pair produced partner of its b quark
- ullet b or $ar{b}$ content of charged opposite side B can be identified by
 - Jet charge
 - Lepton charge (e, μ)
- □ εD²≈1.2%

Same side kaon tag (SSKT):

- Sign of kaon from primary vertex of candidate B can tag B_s or B_s flavour
- \Box Kaon contains the pair produced $s(\bar{s})$ quark of the B_s
- □ εD²≈3.2%

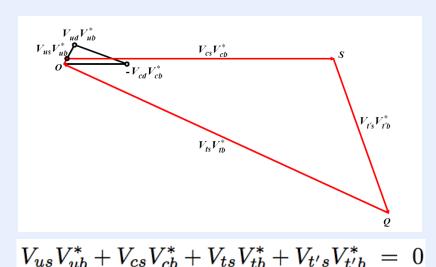
Important tagging parameters:

tag decision, tagging dilution (weight) and tagging efficiency

Inclusion of S-wave KK component

- S-wave KK component has been added to full angular, timedependent likelihood fit.
- Both f₀ and non-resonant KK are considered flat in mass within the small selection window,
- □ J/ ψ KK (f₀) is pure CP odd state -> follows time dependence of CP odd component of B_s \rightarrow Ψ φ
- KK mass is NOT a fit parameter

The fitted fraction of KK S-wave contamination in the signal is < 6.7% at the 95% CL


Potential NP contributions

- 4th generation could enhance the weak mixing diagram in the neutral B_s system
- George W.S. Hou suggests the t' as a possible contribution to the mixing box diagrams

SM contains the ingredients to generate the 100% Baryon Asymmetry

of the Universe (BAU)

- Predicted CP violation from
 3 generations is negligible
 compared to what is observed in
 BAU
- 4th generation of quarks would lead to "unitarity quadrangle"
 - -> enhances SM CP violation by 10 orders of magnitude!

arXiv:0803.1234v3 George W.S. Hou

Systematic errors

- Systematic study for point estimates uses pseudo experiments to estimate potential effects of any mis-parameterisations in the fitter.
- 2 techniques used:
 - Generating pseudo experiments using an altered parameterisation, fitting with default model
 - Generating pseudo experiments according to histograms of real data distribution

Systematic	$\Delta\Gamma$	$c au_s$	$ A_{ }(0) ^2$	$ A_0(0) ^2$	ϕ_{\perp}
Signal efficiency:					
Parameterisation	0.0024	0.96	0.0076	0.008	0.016
MC reweighting	0.0008	0.94	0.0129	0.0129	0.022
Signal mass model	0.0013	0.26	0.0009	0.0011	0.009
Background mass model	0.0009	1.4	0.0004	0.0005	0.004
Resolution model	0.0004	0.69	0.0002	0.0003	0.022
Background lifetime model	0.0036	2.0	0.0007	0.0011	0.058
Background angular distribution:					
Parameterisation	0.0002	0.02	0.0001	0.0001	0.001
$\sigma(c\tau)$ correlation	0.0002	0.14	0.0007	0.0007	0.006
Non-factorisation	0.0001	0.06	0.0004	0.0004	0.003
$B^0 \to J \psi K^*$ crossfeed	0.0014	0.24	0.0007	0.0010	0.006
SVX alignment	0.0006	2.0	0.0001	0.0002	0.002
Mass error	0.0001	0.58	0.0004	0.0004	0.002
c au error	0.0012	0.17	0.0005	0.0007	0.013
Pull bias	0.0028		0.0013	0.0021	
Totals	0.01	3.6	0.015	0.015	0.07

Point estimates: results comparison

$$c au = 458.64 \pm 7.54 \; ({
m stat.}) \; \mu m$$
 $c au = 459.1 \pm 7.7 \; ({
m stat.}) \; \mu m$ $\Delta\Gamma = 0.075 \pm 0.035 \; ({
m stat.}) \; ps^{-1}$ $\Delta\Gamma = 0.073 \pm 0.03 \; ({
m stat.}) \; ps^{-1}$ $|A_{\parallel}|^2 = 0.231 \pm 0.014 \; ({
m stat.})$ $|A_{\parallel}|^2 = 0.232 \pm 0.014 \; ({
m stat.})$ $|A_{\parallel}|^2 = 0.524 \pm 0.013 \; ({
m stat.})$ $|A_{\parallel}|^2 = 0.523 \pm 0.012 \; ({
m stat.})$ $\phi_{\perp} = 2.95 \pm 0.64 \; ({
m stat.})$ $\phi_{\perp} = 2.80 \pm 0.56$

Tagged, with S-wave

Untagged, with S-wave

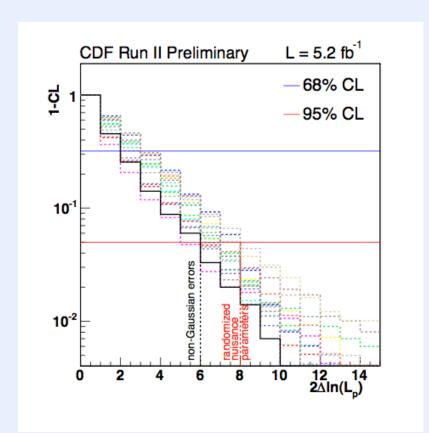
 $\Delta\Gamma = 0.071 \pm 0.036 \text{ (stat.) } ps^{-1}$ $\Delta\Gamma = 0.070 \pm 0.04 \text{ (stat.) } ps^{-1}$ $|A_{\parallel}|^2 = 0.233 \pm 0.015 \text{ (stat.)}$ $|A_{\parallel}|^2 = 0.233 \pm 0.016 \text{ (stat.)}$ $|A_0|^2 = 0.521 \pm 0.013 \text{ (stat.)}$

Untagged, no S-wave

Tagged, no S-wave

$$c au = 456.93 \pm 7.69 \; ({
m stat.}) \; \mu m$$
 $c au = 457.2 \pm 7.9 \; ({
m stat.}) \; \mu m$ $\Delta\Gamma = 0.071 \pm 0.036 \; ({
m stat.}) \; ps^{-1}$ $\Delta\Gamma = 0.070 \pm 0.04 \; ({
m stat.}) \; ps^{-1}$ $|A_{\parallel}|^2 = 0.233 \pm 0.015 \; ({
m stat.})$ $|A_{\parallel}|^2 = 0.233 \pm 0.016 \; ({
m stat.})$ $|A_{0}|^2 = 0.520 \pm 0.013 \; ({
m stat.})$

Measurement of β_s : coverage adjustment


Use likelihood ratio ordering technique to account for non-Gaussian behaviour (ensure confidence regions not under-covered) and to include effect of systematics on the errors:

- **Generate** pseudo experiments at the SM point in the $\Delta\Gamma$ - β_s plane.
- Fit with all parameters floating
- **The integral is a proof of the SM** in Fit again with $\Delta\Gamma$ and β_s fixed to the SM point
- Form a likelihood ratio:

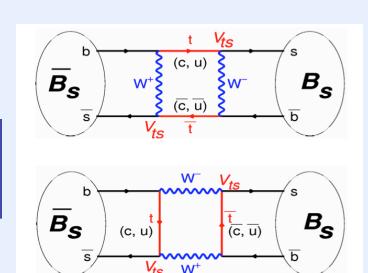
$$\mathcal{LR} = 2\log \frac{\mathcal{L}(\beta_s^{J/\psi\phi}, \Delta\Gamma, \vec{\xi})}{\mathcal{L}(\vec{\xi})}$$

Measurement of β_s

- □ Ideal case: produce fit value of β_s as we do for lifetime, etc.
- ullet At current statistical level, fit shows some bias for eta_s
- □ Instead, produce 2D likelihood contours in $β_s$ ΔΓ space
 - \blacksquare Perform fits on data with β_s and $\Delta\Gamma$ fixed at 400 points on 20x20 grid
 - Ratio of log likelihood value for fit at each point to the global minimum used to construct likelihood contour plots
- Use profile-likelihood ratio ordering technique to ensure coverage

CP violation in neutral B_s system

Flavour eigenstates:


$$| \ B_s^0
angle = (ar{b}s) \ | \ ar{B}_s^0
angle = (bar{s}) \ |$$

Mixing of flavour eigenstates is governed by:

$$i\frac{d}{dt}\left(\begin{array}{c}B_s^0(t)\\\overline{B}_s^0(t)\end{array}\right) = H\left(\begin{array}{c}B_s^0(t)\\\overline{B}_s^0(t)\end{array}\right) \equiv \underbrace{\left[\left(\begin{array}{cc}M_0 & M_{12}\\M_{12}^* & M_0\end{array}\right)}_{\text{mass matrix}} - \underbrace{i}_2\underbrace{\left(\begin{array}{cc}\Gamma_0 & \Gamma_{12}\\\Gamma_{12}^* & \Gamma_0\end{array}\right)\right]}_{\text{decay matrix}}\left(\begin{array}{c}B_s^0(t)\\\overline{B}_s^0(t)\end{array}\right)$$

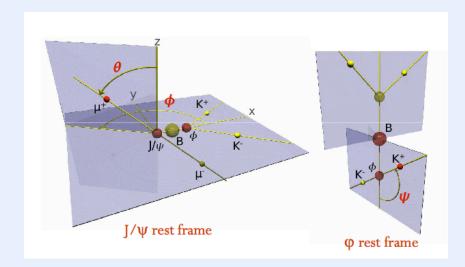
Flavour eigenstates are not mass eigenstates:

$$\begin{aligned} |B_s^H\rangle &= p \,|B_s^0\rangle - q \,|\bar{B}_s^0\rangle \\ |B_s^L\rangle &= p \,|B_s^0\rangle + q \,|\bar{B}_s^0\rangle \end{aligned}$$

Different masses -> mixing frequency:

 $\Delta m_s = m_H - m_I \approx 2IM_{12}I$

-> phase:


 $\varphi_s^{SM} = arg(-M_{12}/\Gamma_{12}) \sim 0.004$

Different decay widths:

 $\Delta\Gamma = \Gamma_{L} - \Gamma_{H} \approx 2 |\Gamma_{12}| \cos(2\varphi_{s}^{SM})$

Fit function: angular separation

Final state is a mixture of CP even (~75%) and odd (~25%) states.

IA₀I²: polarisation longitudinal, parallel

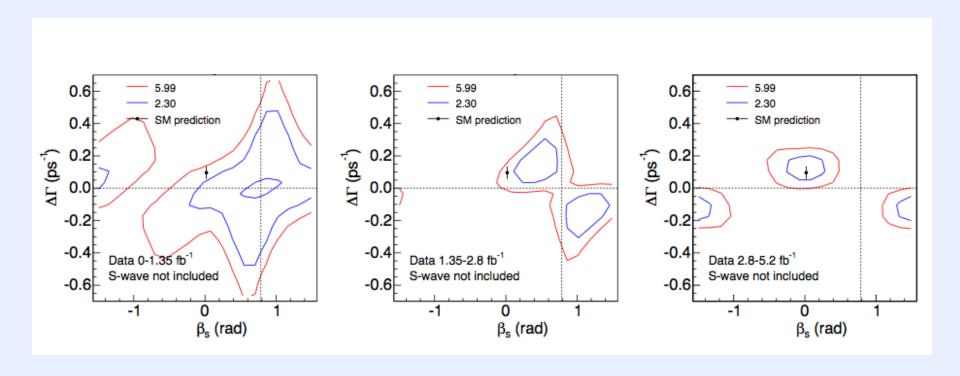
IA_{//}I²: polarisation transverse, parallel

 $IA_{perp}I^2$: polarisation transverse, perpendicular

Three angular momentum states of J/ψ phi:

L=0 S-wave **CP even**

L=1 P-wave CP odd


L=2 D-wave CP even

Can separate final CP states using angular variables

Transversity basis describes these contributions as: A_0 , $A_{//}$ (CP even), A_{perp} (CP odd) according to their polarisation.

Can be separated using the angular distributions of the final state particles

Comparison of data periods

